Exercise 2

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}-3 y^{\prime}=\sin 2 x
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-3 y_{c}^{\prime}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-3\left(r e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-3 r=0
$$

Solve for r.

$$
\begin{gathered}
r(r-3)=0 \\
r=\{0,3\}
\end{gathered}
$$

Two solutions to the ODE are $e^{0}=1$ and $e^{3 x}$; by the principle of superposition, then,

$$
y_{c}(x)=C_{1}+C_{2} e^{3 x} .
$$

The particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-3 y_{p}^{\prime}=\sin 2 x \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a sine and there are even and odd derivatives, the particular solution is $y_{p}=A \cos 2 x+B \sin 2 x$.

$$
y_{p}=A \cos 2 x+B \sin 2 x \quad \rightarrow \quad y_{p}^{\prime}=-2 A \sin 2 x+2 B \cos 2 x \quad \rightarrow \quad y_{p}^{\prime \prime}=-4 A \cos 2 x-4 B \sin 2 x
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
(-4 A \cos 2 x-4 B \sin 2 x)-3(-2 A \sin 2 x+2 B \cos 2 x)=\sin 2 x \\
(-4 A-6 B) \cos 2 x+(-4 B+6 A) \sin 2 x=\sin 2 x
\end{gathered}
$$

Match the coefficients on both sides to get a system of equations for A and B.

$$
\left.\begin{array}{l}
-4 A-6 B=0 \\
-4 B+6 A=1
\end{array}\right\}
$$

Solving this system yields

$$
A=\frac{3}{26} \quad \text { and } \quad B=-\frac{1}{13},
$$

which means the particular solution is

$$
y_{p}=\frac{3}{26} \cos 2 x-\frac{1}{13} \sin 2 x .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1}+C_{2} e^{3 x}+\frac{3}{26} \cos 2 x-\frac{1}{13} \sin 2 x,
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

